SIMCON

A Simulation and Visualization Environment for Overlay Networks and Large-Scale Applications

Markus Esch
University of Luxembourg

Hermann Schloss, Ingo Scholtes, Jean Botev, Alexander Höhfeld and Benjamin Zech
University of Trier

Outline

- Motivation
- Design / Features
- Architecture
- Future Work
Motivation

- 3D Internet project *HyperVerse*
 - Combining Virtual Globe with MMOG

- Global scale P2P Infrastructure
 → Simulation environment *SimCon*

Motivation

- Find suitable P2P topology for a given application scenario
- Using realistic Internet router graph
 - Quality of simulation results
 - Impact of P2P topology on the router infrastructure
 - TopGen
Design / Features

- .Net (C#)
- Independence of application and topology
 - Modular design
- Reusability
 - Communication Shims
- Extensibility
- Focus on P2P overlay topology
- Multithreaded approach

TopGen

- TopGen generates underlying router graph
- Similar to real internet graph
 - Vertex degree distribution
 - Clustering coefficient
 - Assortativity
- Provides detailed router information
 - Connectivity, Bandwidth, Latency and Router Type
Application Module

- Emulates the behavior of an application
- Each application instance assigned to one end host node
- Each application instance in a single thread
- Communication via Topology Modules
- Possibility to gear into a simulation asynchronously

IApp Abstract Class

Methods

- AsyncEvent
- SetSettings
- SetVertex
- Start

Architecture

Simulated Applications

- Application : IApp
 - Start Instances
- Topology Module 1 : ITopology
- Topology Module n : ITopology
 - CommunicationShim : ICoachShim
 - OverlayVertex

Simulation Controller

- Controller

Simulation Evaluation

- Recorder 1 : IRecorder
- Recorder n : IRecorder
- View : IView
Topology Module

- A topology module implements a P2P overlay network protocol
 - E.g. Chord
- TopologyEvents
- Reusability of Topology Modules
 - Communication Shim

ITopology Interface

Methods
- Fail
- Join
- Leave
- Lookup
- Publish
- Read
- SendBroadcast
- SendMulticast
- SendUnicast
- SetComShim
- Stabilise
- Write

Architecture

- Simulated Applications
 - Application
 - Topology Module 1
 - Topology Module n
 - Communication Shim
 - OverlayVertex
- Simulation Controller
 - ITopology
 - Controller
- Simulation Evaluation
 - Recorder 1
 - Recorder n
 - View

Markus Esch - University of Luxembourg
SIMULTools 2008 – Marseille – 12/19/2008
Communication Shim

- Send and receive Messages
- Application specific Communication Shims
- SimCon Communication Shim sends and receives messages via the controller

IComShim Abstract Class

Methods
- Send

Events
- Received

Architecture

Simulated Applications → Simulation Controller → Simulation Evaluation

- Application
- Topology Module 1
- Topology Module n
- CommunicationShim
- OverlayVertex
- Controller

Recorder 1 : IRecorder
Recorder n : IRecorder
View : IView
Recorder

- Track a simulation
 - Topology Events
- Standard Recorder
 - Count events
- Customized Recorder
- Use TopGen graph to calculate HopCount and Latency
 - During runtime
 - Post processing

Architecture

Simulated Applications

- Application
- Topology + Module
 - Start Instances
- Communication Shim
 - Overlay Vertex

Simulation Controller

- Controller
- ITopology

Simulation Evaluation

- Recorder
 - FinalizeRecording
 - GetSettings
 - SetSettings
- View
 - IView

Markus Esch - University of Luxembourg
SIMUTools 2008 – Marseille – 12/19/2008
View

- Visualizes a simulation
 - Topology Events
- Gear manually into a running simulation via view
 - SetAsyncHandler
 - Initiate asynchronous event via controller

User Interface

Markus Esch - University of Luxembourg
SIMUTools 2008 – Marseille – 12/19/2008
Future Work

- Cluster support
 - Communication Shim
 - Multithreaded
- Hybrid simulations
- Performance and scalability evaluation

Thank you for your attention!!