SELF-ORGANIZATION IN THE HYPERVERSE

Ingo Scholtes
Systemsoftware and Distributed Systems
Dept. of Computer Science
University of Trier
Germany

PREFACE
Motivation

MMOGs

Second Life

Google Earth

The HyperVerse Project

- Distributed Virtual Environment (DVE) as Major Future Internet App
 - Immersive
 - Collaborative
 - Intuitive
- Assumptions ...
 - No pre-distributed Content
 - Lightweight Access
 - Federated Governance
 - Global-Scale
 - Self-Sustainable
A Self-Organizing Approach

- DVEs Great Domain for Self-Organization
 - High Dynamics
 - Spatial Context
- Inspiration from Physics, Biology, ...
 - Thermodynamics
 - Entropy
 - Statistical Mechanics
 - Epidemics
- This Talk
 - Three recent applications
Flash Crowds ...

- **Spontaneous Surge of Interest**
 - Hardly Predictable
 - Load Delays ...

- **Two Issues ...**
 - Data Provider Scalability
 - Data Consumer Fan-In

Provider Scalability

- **Flash Crowd**
 - Numerous requestors for certain set of data

- **Peer-to-Peer Approach**
 - Utilize resources of requestors

- **HyperVerse**
 - BitTorrent-like distribution
 - Split data in chunks
 - Parallel retrieval from „nearby“ peers

A Peer-to-Peer Approach

Scalability

Required Server Bandwidth
(with Torrents)

Required Server Bandwidth
(without Torrents)
Consumer Fan-In?

- What about Data Consumers?
 - Restricted Downlink
 - Fan-In Problem …
- Maybe there are 1,000 sources …
 - … but we can only use few in parallel

Load Delays

- Interest Management
 - Limited view of surrounding
 - When we know about objects, it might be too late to download data…
Simulation Results ...

(a) Visualization of Selected Steps

(b) Object Retrieval Traffic and Pending Data Units

Ideas?

- Aggregate View of Local Equilibria
Decentralized Flash Crowd Detection

- **Simple Per-Client Algorithm**
 - Mass = download complexity
 - Compute Center of Mass (CoM) of Local View
 - Compute Sum of Masses (SuM)

Epidemic Aggregation

- **Exchange CoM and SuM**
 - With random neighbor
 - In periodic interval
 - Maximum aggregation
- **Range-Constraint**
 - Lookahead radius

Hoard

- Enriched Local View of Clients
 - Use additional local information
 - Predict populated regions most probably entered
 - Hoard data speculatively

Simulation
Can this replace Interest Management as a whole?

Self-organized Adaptation of …
 • … Lookahead Radius
 • … Hoarding Rate
Till now ...
- Geometric Random Graph (GRG)
- Good for local gossiping and data retrieval

What about other characteristics?
- Routing of global messages
- Connectedness
- ...

Our Approach
- Additional statistically-structured Overlay with favorable characteristics
- Which characteristics?
Self-Adapting Thermodynamic Overlay Structures

NETWORK PHASE TRANSITIONS

Phase Transitions in Physics

![Diagram showing phase transitions in physics with Viscosity vs. Temperature graph. The graph has a sharp decrease in Viscosity at a certain temperature.]

- **Viscosity**
- **Temperature °C**

01.12.2008
Examples for Phase Transitions

- Small-World Property in Watts/Strogatz Graphs
- GCC in Erdös/Renyi Graphs
- Power Law Graphs

Critical Points in Power Law Graphs

- Vertex Degree Distribution
 \[P(X = k) \propto k^{-\gamma} \]

- Moment
 \[M_m = E(X^m) = \sum_{k=1}^{\infty} \frac{1}{k^{\gamma-m}} \]

- Convergence Interval
 \[\gamma > m + 1 \]
Fundamental graph properties can be attributed to degree distribution exponent!
Application in P2P Networks

- Self-Organizing Power Law Overlay
 - Peers are aware of current phase
 - By monitoring degree distribution exponent
 - Peers actively initiate transition to other phase
 - By adapting degree distribution exponent
 - “Awareness-Driven Phase Transitions”

An Odd Analogy ...

- Body of Water = P2P system
 - Water molecule = Peer
- Awareness-driven Phase Transition
 - Depending on “application requirements”
 - Water molecules know and adapt current temperature
Decentralized Monitoring of the Power Law Exponent

Complications ...

- Reliable Power Law Fitting Non-Trivial
 - Maximum Likelihood Estimation (MLE)
 - currently best available method
 - See [Aaron Clauset 2007]

\[
\gamma = 1 + \frac{\sum_{v \in V} \ln \left(\frac{d_{cg}(v)}{d_{min} - \frac{1}{2}} \right)}{|V|}
\]
Estimating d_{min}

Minimize the following function ...

$$D(y) = \max_{x \geq y} \left| \left\{ v \in V : \deg(v) \geq x \right\} \right| P_y(X \geq x)$$

A Local Approach

- Local Knowledge = Own Vertex Degree
- Epidemic (Sum) Aggregation

$$(S_v, N_v) = (\ln(\deg(v)), 1)$$

Sum Aggregation

$$(S_v, N_v) \rightarrow \left(\sum_{w \in V} \ln(\deg(w)), |V| \right)$$
Local Estimation of γ

$$\gamma_v = 1 + \frac{N_v}{S_v - N_v \cdot \ln\left(d_{\min} - \frac{1}{2}\right)}$$

Local Estimation of d_{\min}

- **Restriction**
 - d_{\min} among a fixed set of smallest vertex degrees
- **Again Epidemic Aggregation**
 - Of local vectors …

<table>
<thead>
<tr>
<th>MinDeg, []</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg(v)≥MinDeg, []</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Count, []</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>
Local Estimation of d_{min}

Minimize the following function ...

$$\bar{D}_y(y) = \max_{x \in \text{MinDeg}, x \geq y} \left| \frac{\text{Count}_v[x]}{\text{Count}_v[y]} - P_y(X \geq x) \right|$$

Evaluation Results

<table>
<thead>
<tr>
<th>Local Estimates</th>
<th>$i = 5$</th>
<th>$i = 10$</th>
<th>$i = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-Avg</td>
<td>2.833</td>
<td>2.833</td>
<td>2.833</td>
</tr>
<tr>
<td>γ-Var</td>
<td>$1.84 \cdot 10^{-2}$</td>
<td>$2.22 \cdot 10^{-4}$</td>
<td>$4.72 \cdot 10^{-17}$</td>
</tr>
<tr>
<td>D-Avg</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>D-Var</td>
<td>$4.1 \cdot 10^{-4}$</td>
<td>$7.31 \cdot 10^{-6}$</td>
<td>$1.50 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>d_{max}-Avg</td>
<td>5.010</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>d_{min}-Var</td>
<td>$6.850 \cdot 10^{-2}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3. Average and variance of local power law parameter estimations for i iterations of the proposed gossip scheme using a Min$_a$ and MinC, vector size of 10 entries. A global MLE power law fit of the graph used yields $\gamma = 2.833$, $d_{\text{min}} = 5$ and $D = 0.0497$.
Adaptation of Power Law Exponent

- Monitoring of Power Law Exponent
 - Molecules can now efficiently retrieve global temperature
- Adaptation?
 - Instrumentation of Growth (e.g. Preferential Attachment)
 - Localized Preferential Reconnection Schemes

Open Issues

- Test for Power Law Property
 - How to be sure the network obeys a power law?
- Ignored Important P2P Requirement
 - Peers are not trustworthy
 - Effect of manipulations?
- Ultimate Goal
 - Middleware for monitoring and instrumenting complex topologies
 - Not necessarily only for PL networks
Overlay Adaptation?

- Separation of Measuring and Adaptation Phases
 - Notion of Times or Phases
- Large Overlay Networks in general …
 - Round-based Algorithms
 - State Machines
 - No reliable "Clocking" authority?
- Idea
 - Utilize Self-Synchronization Phenomena
A Self-Organized Notion of Time

Epidemic Self-Synchronization

Local Clocks ...
Kuramoto Oscillators

\[\frac{d\theta_i}{dt} = \omega_i + K \cdot \sum_{j=1}^{N} \sin(\theta_j - \theta_i) \]

Kuramoto Oscillators

\[\frac{d\theta_i}{dt} = \omega_i + K \cdot \sum_{j=1}^{N} \sin(\theta_j - \theta_i) \]
Couplings ...

- Problem with Kuramoto model
 - Coupling to all nodes
 - Continuously
 \[\frac{\partial \theta_i}{\partial t} = \omega_i + K \cdot \sum_{j=1}^{N} \sin(\theta_j - \theta_i) \]

- A better idea
 - Coupling to single random neighbor
 - Periodically
 - Epidemic Synchronization

Geometric Random Graph
What about Dynamics?

- Exiting / Joining Peers?
- Perturbation

Effect on Synchronization?
- Can we somehow leverage stable hubs in Power Law Networks?
Results ...

(a) WS(1, 10), f_2, 0.1%
(b) BA, f_2, 0.1%
(c) BA, f_3, 0.1%
(d) WS(1, 10), f_2, 1%
(e) BA, f_2, 1%
(f) BA, f_3, 1%

Controllability ...

00000
Conclusion

- Three applications of Self-Organization
 - Flash Crowds
 - Adaptable P2P Overlay
 - Self-Organized and Robust Notion of Time

- What we can use …
 - Decentralized, efficient algorithms
 - Spontaneous emergence of order
 - Statistical / Thermodynamic Arguments
Further Reading

- http://hyperverse.syssoft.uni-trier.de

Discussion Opener

„Distributed Systems are about to reach a *mesoscopic* scale. We will have to rely on thermodynamic principles to make them scalable, reliable and adaptive!“